COUNTEREXAMPLES TO LIFTING OF HAMILTONIAN AND CONTACT ISOTOPIES

PETYA PUSHKAR

ABSTRACT. We construct counterexamples to lifting properties of Hamiltonian and contact isotopies

Introduction

1. Isotopy Lifting

1.1. Symplectic reduction along a hypersurface. We recall a notion of a symplectic reduction along a hypersurface [AG]. A smooth hypersurface in a symplectic manifold carries a field of characteristic directions which are kernels of the restriction of the symplectic structure to the hypersurface. We will suppose that a space of characteristics (i.e. integral curves of that field) is a manifold (it always holds locally) and, in particular, that a natural projection of the hypersurface to the space of characteristics is a smooth fibration. The manifold of characteristics descends a natural symplectic structure from the initial symplectic structure [AG]. The resulting symplectic manifold is called a symplectic reduction along the hypersurface.

Let M be a symplectic reduction along a hypersurface \widetilde{Z} in a symplectic manifold \widetilde{M} . Denote by $\widetilde{\Pi}$ the natural projection $\widetilde{Z} \to M$. For a subset \widetilde{L} in \widetilde{M} its symplectic reduction along \widetilde{Z} is, by definition, $\widetilde{\Pi}(\widetilde{L} \cap \widetilde{Z})$. It is well known that for a Lagrangian submanifold in \widetilde{M} which is transversal to \widetilde{Z} its symplectic reduction along \widetilde{Z} is an immersed Lagrangian submanifold in M.

It is said that an isotopy I(t) $(t \in [0,1])$ of L (L is a symplectic reduction of \widetilde{L}) lifts in \widetilde{M} if there exists an isotopy $\widetilde{I}(t)$ $(t \in [0,1])$ of \widetilde{M} such that I(t)(L) is a symplectic reduction of $\widetilde{I}(t)(\widetilde{L})$.

1.2. Lifting of an isotopy. The following Hamiltonian isotopy lifting property was claimed for the case of general (i.e. not only along a hypersurface) symplectic reduction in [EG] (Lemma 2.5.1):

Statement 1.1. If the subset $\widetilde{L} \subset \widetilde{M}$ is closed and the projection of $\widetilde{L} \cap \widetilde{Z}$ to M is proper, then every compact Hamiltonian isotopy I(t) in M lifts to a compact Hamiltonian isotopy $\widetilde{I}(t)$ in \widetilde{M} which maps some neighbourhood $\widetilde{Z}_0 \subset \widetilde{Z}$ of $\widetilde{L} \cap \widetilde{Z} \subset \widetilde{Z}$ into \widetilde{Z} for all $t \in [0,1]$.

This study was carried out within The National Research University Higher School of Economics Academic Fund Program in 2012-2013, research grant No.11-01-0059.

If the hypersurface \widetilde{Z} is compact and cooriented then it is easy to prove that statement. Any smooth compactly supported extension \widetilde{H}_t of a peimage of a Hamiltonian H_t of the isotopy on M gives us a required isotopy on \widetilde{M} . Surprisingly, in contrast with an analogues statement in the smooth category, that proof could not be adapted to the general non-compact situation and it is indeed wrong. Formal mistake in the proof of 1.1 in [EG] is an assumption that the Hamiltonian vector field of \widetilde{H}_t is globally integrable (i.e. gives rise to a phase flow defined for all values of time) on \widetilde{Z} . We show below that in general one need to have a "sufficiently big room" in \widetilde{M} to construct a lifting of a compactly supported isotopy of a reduction of a Lagrangian submanifold.

2. Contact reduction along a hypersurface

We recall the notion of contact reduction along a hypersurface. The following construction is a contact analog of the symplectic reduction along a hypersurface above. Consider a contact manifold $(\tilde{N}, \tilde{\xi})$ and a smooth hypersurface \tilde{Z} in \tilde{N} . We will suppose that at each point of \tilde{Z} tangent plane to \tilde{Z} is transversal to ξ . In that case ξ carries a natural (characteristic) field of directions ([AG]???). Similarly to the symplectic case we suppose that its integral curves forms a manifold N, so that the natural projection $\Pi \colon \tilde{Z} \to N$ is a smooth fibration. Then N carries a canonical contact structure ξ which is uniquely defined by the condition – preimage of ξ under the action of $d\Pi$ concides with $\tilde{\xi} \cap T\tilde{Z}$.

Definitions of the contact reduction of a subset along a hypersurface and lifting of an isotopy coincide with the symplectic case above. The following contact isotopy lifting property was formulated (modulo few misprints) in [EG] (Lemma 2.6.1):

Statement 2.1. If the subset \widetilde{L} is closed in \widetilde{N} and the projection of $\widetilde{L} \cap \widetilde{Z}$ to N is proper, then for every compact contact isotopy $I(t), t \in [0,1]$ in N there exists a compact contact isotopy $\widetilde{I}(t)$ in \widetilde{N} such that

- (a) $\Pi(\widetilde{I}(t)\widetilde{L}\cap\widetilde{Z})=I(t)L$,
- (b) $\widetilde{I}(t)$ maps some neighbourhood of $\widetilde{L} \cap \widetilde{Z} \subset \widetilde{Z}$ into \widetilde{Z} for all $t \in [0,1]$.

3. Counterexamples

We will show that Statements 2.1 and 2.1 are not true in general.

3.1. Contact case. Let us start from the contact case and describe $\widetilde{N}, \widetilde{Z}$ and \widetilde{L} . Let M be a closed connected manifold. Consider the contact manifold $J^1(M \times \mathbb{R}) = T^*M \times T^*\mathbb{R} \times \mathbb{R}$, denote by (q,p) the canonical coordinates on the factor $T^*\mathbb{R}$. Let \widetilde{N} be an open submanifold of $J^1(M \times \mathbb{R})$ given by inequalities |q| < 1, |p| < 1. \widetilde{N} is a contact manifold with the induced contact structure. We define \widetilde{Z} to be a hypersurface in \widetilde{N} given by an equation q = 0. Consider the 1-jet extension $j^1\widetilde{f} \subset J^1(M \times \mathbb{R})$ of zero function \widetilde{f} on $M \times \mathbb{R}$, let \widetilde{L} be $j^1\widetilde{f} \cap \widetilde{N}$. For such a hypersurface \widetilde{Z} the contact reduction N is naturally contactomorphic to the space $J^1(M)$ with its standard contact structure, L is the 1-jet extension j^1f of zero function f on M. The hypersurface \widetilde{Z} and Legendrian manifold j^1f satisfy conditions of Statement

2.1. Note that for any smooth function g on M j^1g could be connected with j^1f by compactly supported contact isotopy.

Statement 3.1. Consider a compactly supported contact isotopy $\varphi_{t,t\in[0,1]}$ of the manifold $J^1(M)$. Suppose that $\varphi_1(j^1f)=j^1g$ for a function $g\colon M\to\mathbb{R}$. Suppose there exists a compactly supported lifting of that isotopy to a contact isotopy on \widetilde{N} satisfying conditions of Statement 2.1. Then $\max_{x\in M}g(x)\leqslant 1$, $\max_{x\in M}g(x)-\min_{x\in M}g(x)\leqslant 2$.

As a corollary we get that it is impossible to lift any contact isotopy joining $j^1 f$ with $j^1 g$ where $\max_{x \in M} g(x) > 1$. Note that this result is non-trivial even M is a point.

Proof. Consider a compactly supported contact isotopy of \widetilde{N} and extend it trivially to the compactly supported contact isotopy $\widetilde{\varphi}_{t,t\in[0,1]}$ (supported in \widetilde{N}) of $J^1(M\times\mathbb{R})$. By Chekanov theorem ([Ch]) there exists N such that $\widetilde{\varphi}_1(j^1\widetilde{f})$ is given by quadratic at infinity (with respect to \mathbb{R}^N) generating family $F\colon M\times\mathbb{R}\times\mathbb{R}^N\to\mathbb{R}$. Consider now the function F as a family $G_{q,q\in\mathbb{R}}$ of functions depending on $q\in\mathbb{R}$, \mathbb{R} is the factor in $M\times\mathbb{R}\times\mathbb{R}^N$, $G_q(x,w)=F(x,q,w)$ for $x\in M,w\in\mathbb{R}^N$. Recall that Cerf diagramm of family of functions is a graph of all critical values. Consider the Cerf diagramm Γ of G_q . For $|q|\geqslant 1$ all critical values of $G_q(x,w)$ are equal to zero. Cerf diagramm Γ contains a graph of continuous function $h\colon [-1,1]\to\mathbb{R}$, such that $h(0)=\max_{x\in M}g(x)$. Existence of such a function follows from Viterbo's theory of selected values of quadratic at infinity functions. We briefly sketch it here.

For a quadratic at infinity function $G \colon M \times \mathbb{R}^N \to \mathbb{R}$ and non-zero homological class $\alpha \in H_*(M, \mathbb{Z}_2)$ one can correspond a critical value $c(\alpha, G)$ of function G in a following way. Denote by G^a the sublevel set $\{x \in M \times \mathbb{R} | G(x) \leq a\}$. For a sufficiently big number C > 0 the pair (G^C, G^{-C}) is naturally homotopy equivalent to the Thom space of a trivial bundle over M. Denote by T the Thom isomorphism $H_*(M; \mathbb{Z}_2) \to H_*(G^C, G^{-C}; \mathbb{Z}_2)$. Then $c(\alpha, G) = \inf\{a | T\alpha \in i_*H_*(G^a, G^{-C}; \mathbb{Z}_2)\}$, where i is a natural inclusion map $(G^a, G^{-C}) \to (G^C, G^{-C})$. It turns out that $c(\alpha, G)$ is a critical value of G and it depends on G continuously. Consider a function $h \colon \mathbb{R} \to \mathbb{R}$, $h(q) = c([M], G_q)$, [M] is Z_2 -fundamental class of M. Consider the number h(0). Note that G_0 is a quadratic at infinity generating family for j^1g . We claim that if G is a quadratic family for 1-jet extension j^1g of a function $g \colon M \to \mathbb{R}$ then $c([M], G) = \max_{x \in M} g(x)$. Fastest way to prove it is to use Theret uniqueness theorem [Th], claiming in that particular case that G is equivalent after stabilization to a quadratic stabilization of g. For stabilizations (i.e. functions of type g(x) + Q(w), Q is nondegenerate quadratic form) that statement is obvious.

The graph of the function h is, by definition, a subset in Γ . Note that h(q)=0 for $|q|\geqslant 1$, since all the critical values of G_q are zero. For generic small perturbation $\widetilde{\varphi}^*_{t,t\in[0,1]}$ of $\widetilde{\varphi}_{t,t\in[0,1]}$ supported in \widetilde{N} and the corresponding perturbed family $G^*_{q,q\in\mathbb{R}}$ is sufficiently generic and the corresponding perturbed function h^* is piece-wise smooth. For any $t\in[0,1]$ Legendrian manifold $\widetilde{\varphi}_t(j^1\widetilde{f})$ is transverse to \widetilde{Z} . Hence, the reduction along \widetilde{Z} of $\widetilde{\varphi}_1(j^1\widetilde{f})$ is an 1-jet extension of a function g^* which is C_0 -close to g. So the number $h^*(0)$ is close to $\max_{x\in M}g(x)$. For generic point $q_0\in]-1,1[$ (except a countable discreet set in]-1,1[) in a neighborhood $U(q_0)$ of q_0 critical

point corresponding to $c([M], G_q^*)$ smoothly depends on q: $h^*(q) = F^*(x(q), q, w(q))$ for a smooth functions x(q), w(q), such that for any $q \in U(q_0)$ (x(q), w(q)) is a critical point of G_q^* . Point w(q) is a critical point of $F^*(x(q), q, .) \colon \mathbb{R}^N \to \mathbb{R}$ and generate a point $l(q) \in \widetilde{\varphi}_1^*(j^1\widetilde{f})$. The absolute value of p-coordinate of l(q) is at most 1, since $l(q) \in \widetilde{N}$. By chain rule the derivative $\frac{dh^*}{dq}(q)$ equals to that p-coordinate. Thus $h^*(0) < 1$, since h^* is a piece-wise smooth continuous function whose derivative is at least -1 and $h^*(1) = 0$.

Since $\max_{x \in M} g(x)$ is close to $h^*(0)$ we get the first inequality of the statement. Similarly, using the class $1 \in H_0(M; \mathbb{Z}_2)$, we get $\min_{x \in M} g(x) \geqslant -1$. Hence, $\max_{x \in M} g(x) - \min_{x \in M} g(x) \leqslant 2$.

3.2. Symplectic case. A counterexample in symplectic case is similar to the contact case above. Let M be a closed connected manifold of the dimension at least 1. Consider the symplectic manifold $T^*M \times T^*\mathbb{R}$, denote by (q,p) the canonical coordinates on the factor $T^*\mathbb{R}$. Let \widetilde{N} be an open submanifold of $T^*M \times T^*\mathbb{R}$ given by inequalities |q| < 1, |p| < 1. \widetilde{N} is a symplectic manifold with the induced contact structure. We define \widetilde{Z} to be a hypersurface in \widetilde{N} given by an equation q = 0. Consider the grapf $\Gamma(d\widetilde{f}) \subset T^*M \times T^*\mathbb{R}$ of differential of zero function \widetilde{f} on $M \times \mathbb{R}$, let \widetilde{L} be $\Gamma(d\widetilde{f}) \cap \widetilde{N}$. For such a hypersurface \widetilde{Z} the symplectic reduction N is naturally contactomorphic to the space $T^*(M)$ with its standard symplectic structure, L is the grapf $\Gamma(df) \subset T^*M \times T^*\mathbb{R}$ of zero function on M. The hypersurface \widetilde{Z} and Lagrangian manifold $\Gamma(df)$ satisfy conditions of Statement 1.1.

Statement 3.2. Consider a compactly supported Hamiltonian isotopy $\psi_{t,t\in[0,1]}$ of the manifold $T^*(M)$. Suppose that $\psi_1(\Gamma(df)) = \Gamma(dg)$ for a function $g\colon M\to\mathbb{R}$. Suppose there exists a compactly supported lifting of that isotopy to a Hamiltonian isotopy on \widetilde{N} satisfying conditions of Statement 2.1. Then $\max_{x\in M} g(x) - \min_{x\in M} g(x) \leqslant 2$.

Proof. Consider a lifting isotopy $\widetilde{\psi}_t$ on $T^*M \times T^*\mathbb{R}$. We get a family $\{\widetilde{\psi}_t(\Gamma(d\widetilde{f}))\}$ of Lagrangian maifolds. Each of them is an exact Lagrangian manifold, thus we can cover that isotopy by compactly supported isotopy of Legendrian manifolds $\widetilde{\Lambda}_t$ projecting to $\{\widetilde{\psi}_t(\Gamma(d\widetilde{f}))\}$ and coinciding with $j^1\widetilde{f}$ outside $\widetilde{N} \times \mathbb{R}$. The reduction of $\widetilde{\Lambda}_1$ along $\widetilde{Z} \times \mathbb{R}$ is a $j^1(g')$, where g' differs from g by a constant. To the family Λ_t we can apply considerations of Statement 3.1 . Concluding inequality on g' obviously finish the proof.

Any two graphs of differentials of functions could be joined by compactly supported Hamiltonian isotopy. Hence it is imposible to lift a Hamiltonian isotopy joining the graph of the differential of zero function with the graph of differential of a function g such that $\max_{x \in M} g(x) - \min_{x \in M} g(x) > 2$. Such a function obviously exists if the dimension of M is not zero.

References

[AG] V.I. Arnold, A. Givental

Symplectic geometry, Encyclopedia of mathematical sciences vol 4., Springer 1997.

- [Ch] Y. Chekanov,
- [EG] Y. Eliashberg, M. Gromov
- [EKP] Y. Eliashberg, S. S. Kim, L. Polterovich, Geometry of contact transformations and domains: orderability vs. squeezing, arXiv:math/0511658 .
- [FP] E. Ferrand, P. Pushkar, Morse theory and global coexistence of singularities on wave fronts. J. London Math. Soc. 74 (2006), 527–544
- [La] F. Laudenbach
- [P] P.Pushkar, Generalization
- [Th] D.Theret
- [Vi] C. Viterbo, Symplectic topology as the geometry of generating functions, Math. Ann. 292 (1992), 685-710.