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Abstract. We construct counterexamples to lifting properties of Hamiltonian
and contact isotopies

Introduction

1. Isotopy lifting

1.1. Symplectic reduction along a hypersurface. We recall a notion of a symplectic
reduction along a hypersurface [AG]. A smooth hypersurface in a symplectic man-
ifold carries a field of characteristic directions which are kernels of the restriction
of the symplectic structure to the hypersurface. We will suppose that a space of
characteristics (i.e. integral curves of that field) is a manifold (it always holds lo-
cally) and, in particular, that a natural projection of the hypersurface to the space of
characteristics is a smooth fibration. The manifold of characteristics descends a nat-
ural symplectic structure from the initial symplectic structure [AG]. The resulting
symplectic manifold is called a symplectic reduction along the hypersurface.

Let M be a symplectic reduction along a hypersurface Z̃ in a symplectic manifold

M̃ . Denote by Π̃ the natural projection Z̃ →M . For a subset L̃ in M̃ its symplectic

reduction along Z̃ is, by definition, Π̃(L̃∩ Z̃). It is well known that for a Lagrangian

submanifold in M̃ which is transversal to Z̃ its symplectic reduction along Z̃ is an
immersed Lagrangian submanifold in M .

It is said that an isotopy I(t) (t ∈ [0, 1]) of L (L is a symplectic reduction of

L̃) lifts in M̃ if there exists an isotopy Ĩ(t) (t ∈ [0, 1]) of M̃ such that I(t)(L) is a

symplectic reduction of Ĩ(t)(L̃).

1.2. Lifting of an isotopy. The following Hamiltonian isotopy lifting property was
claimed for the case of general (i.e. not only along a hypersurface) symplectic
reduction in [EG] (Lemma 2.5.1):

Statement 1.1. If the subset L̃ ⊂ M̃ is closed and the projection of L̃ ∩ Z̃ to
M is proper, then every compact Hamiltonian isotopy I(t) in M lifts to a compact

Hamiltonian isotopy Ĩ(t) in M̃ which maps some neighbourhood Z̃0 ⊂ Z̃ of L̃∩Z̃ ⊂ Z̃

into Z̃ for all t ∈ [0, 1].
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If the hypersurface Z̃ is compact and cooriented then it is easy to prove that

statement. Any smooth compactly supported extension H̃t of a peimage of a Hamil-

tonian Ht of the isotopy on M gives us a required isotopy on M̃ . Surprisingly, in
contrast with an analogues statement in the smooth category, that proof could not
be adapted to the general non-compact situation and it is indeed wrong. Formal
mistake in the proof of 1.1 in [EG] is an assumption that the Hamiltonian vector

field of H̃t is globally integrable (i.e. gives rise to a phase flow defined for all values

of time) on Z̃. We show below that in general one need to have a “sufficiently big

room” in M̃ to construct a lifting of a compactly supported isotopy of a reduction
of a Lagrangian submanifold.

2. Contact reduction along a hypersurface

We recall the notion of contact reduction along a hypersurface. The following
construction is a contact analog of the symplectic reduction along a hypersurface

above. Consider a contact manifold (Ñ , ξ̃) and a smooth hypersurface Z̃ in Ñ . We

will suppose that at each point of Z̃ tangent plane to Z̃ is transversal to ξ. In that
case ξ carries a natural (characteristic) field of directions ([AG] ???). Similarly to
the symplectic case we suppose that its integral curves forms a manifold N , so that

the natural projection Π: Z̃ → N is a smooth fibration. Then N carries a canonical
contact structure ξ which is uniquely defined by the condition – preimage of ξ under

the action of dΠ concides with ξ̃ ∩ TZ̃.
Definitions of the contact reduction of a subset along a hypersurface and lifting of

an isotopy coincide with the symplectic case above. The following contact isotopy
lifting property was formulated (modulo few misprints) in [EG] (Lemma 2.6.1):

Statement 2.1. If the subset L̃ is closed in Ñ and the projection of L̃ ∩ Z̃ to N
is proper, then for every compact contact isotopy I(t), t ∈ [0, 1] in N there exists a

compact contact isotopy Ĩ(t) in Ñ such that

(a) Π(Ĩ(t)L̃ ∩ Z̃) = I(t)L,

(b) Ĩ(t) maps some neighbourhood of L̃ ∩ Z̃ ⊂ Z̃ into Z̃ for all t ∈ [0, 1].

3. Counterexamples

We will show that Statements 2.1 and 2.1 are not true in general.

3.1. Contact case. Let us start from the contact case and describe Ñ , Z̃ and L̃. Let
M be a closed connected manifold. Consider the contact manifold J1(M × R) =
T ∗M × T ∗R×R, denote by (q, p) the canonical coordinates on the factor T ∗R. Let

Ñ be an open submanifold of J1(M × R) given by inequalities |q| < 1, |p| < 1.

Ñ is a contact manifold with the induced contact structure. We define Z̃ to be a
hypersurface in Ñ given by an equation q = 0. Consider the 1-jet extension j1f̃ ⊂
J1(M ×R) of zero function f̃ on M ×R, let L̃ be j1f̃ ∩ Ñ . For such a hypersurface

Z̃ the contact reduction N is naturally contactomorphic to the space J1(M) with
its standard contact structure, L is the 1-jet extension j1f of zero function f on M .

The hypersurface Z̃ and Legendrian manifold j1f satisfy conditions of Statement
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2.1. Note that for any smooth function g on M j1g could be connected with j1f by
compactly supported contact isotopy.

Statement 3.1. Consider a compactly supported contact isotopy ϕt,t∈[0,1] of the
manifold J1(M). Suppose that ϕ1(j

1f) = j1g for a function g : M → R. Suppose

there exists a compactly supported lifting of that isotopy to a contact isotopy on Ñ
satisfying conditions of Statement 2.1. Then max

x∈M
g(x) 6 1, max

x∈M
g(x)−min

x∈M
g(x) 6 2.

As a corollary we get that it is impossible to lift any contact isotopy joining j1f
with j1g where max

x∈M
g(x) > 1. Note that this result is non-trivial even M is a point.

Proof. Consider a compactly supported contact isotopy of Ñ and extend it trivially

to the compactly supported contact isotopy ϕ̃t,t∈[0,1] (supported in Ñ) of J1(M×R).

By Chekanov theorem ([Ch]) there exists N such that ϕ̃1(j
1f̃) is given by quadratic

at infinity (with respect to RN) generating family F : M × R× RN → R. Consider
now the function F as a family Gq,q∈R of functions depending on q ∈ R, R is the
factor in M × R× RN , Gq(x,w) = F (x, q, w) for x ∈ M,w ∈ RN . Recall that Cerf
diagramm of family of functions is a graph of all critical values. Consider the Cerf
diagramm Γ of Gq. For |q| > 1 all critical values of Gq(x,w) are equal to zero.
Cerf diagramm Γ contains a graph of continuous function h : [−1, 1]→ R, such that
h(0) = max

x∈M
g(x). Existence of such a function follows from Viterbo’s theory of

selected values of quadratic at infinity functions. We briefly sketch it here.
For a quadratic at infinity function G : M × RN → R and non-zero homological

class α ∈ H∗(M,Z2) one can correspond a critical value c(α,G) of function G in
a following way. Denote by Ga the sublevel set {x ∈ M × R|G(x) 6 a}. For a
sufficiently big number C > 0 the pair (GC , G−C) is naturally homotopy equivalent
to the Thom space of a trivial bundle over M . Denote by T the Thom isomorphism
H∗(M ;Z2) → H∗(G

C , G−C ;Z2). Then c(α,G) = inf{a|Tα ∈ i∗H∗(G
a, G−C ;Z2)},

where i is a natural inclusion map (Ga, G−C)→ (GC , G−C). It turns out that c(α,G)
is a critical value of G and it depends on G continuously. Consider a function
h : R → R, h(q) = c([M ], Gq), [M ] is Z2-fundamental class of M . Consider the
number h(0). Note that G0 is a quadratic at infinity generating family for j1g. We
claim that if G is a quadratic family for 1-jet extension j1g of a function g : M → R
then c([M ], G) = max

x∈M
g(x). Fastest way to prove it is to use Theret uniqueness

theorem [Th], claiming in that particular case that G is equivalent after stabilization
to a quadratic stabilization of g. For stabilizations (i.e. functions of type g(x)+Q(w),
Q is nondegenerate quadratic form) that statement is obvious.

The graph of the function h is, by definition, a subset in Γ. Note that h(q) = 0
for |q| > 1, since all the critical values of Gq are zero. For generic small perturbation

ϕ̃∗t,t∈[0,1] of ϕ̃t,t∈[0,1] supported in Ñ and the corresponding perturbed family G∗q,q∈R
is sufficiently generic and the corresponding perturbed function h∗ is piece-wise

smooth. For any t ∈ [0, 1] Legendrian manifold ϕ̃t(j
1f̃) is transverse to Z̃. Hence,

the reduction along Z̃ of ϕ̃1(j
1f̃) is an 1-jet extension of a function g∗ which is C0-

close to g. So the number h∗(0) is close to max
x∈M

g(x). For generic point q0 ∈]− 1, 1[

(except a countable discreet set in ] − 1, 1[) in a neighborhood U(q0) of q0 critical
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point corresponding to c([M ], G∗q) smoothly depends on q: h∗(q) = F ∗(x(q), q, w(q))
for a smooth functions x(q), w(q), such that for any q ∈ U(q0) (x(q), w(q)) is a critical
point of G∗q. Point w(q) is a critical point of F ∗(x(q), q, .) : RN → R and generate a

point l(q) ∈ ϕ̃∗1(j1f̃). The absolute value of p-coordinate of l(q) is at most 1, since

l(q) ∈ Ñ . By chain rule the derivative dh∗

dq
(q) equals to that p-coordinate. Thus

h∗(0) < 1, since h∗ is a piece-wise smooth continuous function whose derivative is
at least −1 and h∗(1) = 0.

Since max
x∈M

g(x) is close to h∗(0) we get the first inequality of the statement.

Similarly, using the class 1 ∈ H0(M ;Z2), we get min
x∈M

g(x) > −1. Hence,

max
x∈M

g(x)−min
x∈M

g(x) 6 2. �

3.2. Symplectic case. A counterexample in symplectic case is similar to the contact
case above. Let M be a closed connected manifold of the dimension at least 1.
Consider the symplectic manifold T ∗M × T ∗R, denote by (q, p) the canonical coor-

dinates on the factor T ∗R. Let Ñ be an open submanifold of T ∗M × T ∗R given by

inequalities |q| < 1, |p| < 1. Ñ is a symplectic manifold with the induced contact

structure. We define Z̃ to be a hypersurface in Ñ given by an equation q = 0. Con-

sider the grapf Γ(df̃) ⊂ T ∗M × T ∗R of differential of zero function f̃ on M ×R, let

L̃ be Γ(df̃)∩ Ñ . For such a hypersurface Z̃ the symplectic reduction N is naturally
contactomorphic to the space T ∗(M) with its standard symplectic structure, L is

the grapf Γ(df) ⊂ T ∗M × T ∗R of zero function on M . The hypersurface Z̃ and
Lagrangian manifold Γ(df) satisfy conditions of Statement 1.1.

Statement 3.2. Consider a compactly supported Hamiltonian isotopy ψt,t∈[0,1] of
the manifold T ∗(M). Suppose that ψ1(Γ(df)) = Γ(dg) for a function g : M → R.
Suppose there exists a compactly supported lifting of that isotopy to a Hamiltonian

isotopy on Ñ satisfying conditions of Statement 2.1. Then max
x∈M

g(x)−min
x∈M

g(x) 6 2.

Proof. Consider a lifting isotopy ψ̃t on T ∗M × T ∗R. We get a family {ψ̃t(Γ(df̃))}
of Lagrangian maifolds. Each of them is an exact Lagrangian manifold, thus we

can cover that isotopy by compactly supported isotopy of Legendrian manifolds Λ̃t

projecting to {ψ̃t(Γ(df̃))} and coinciding with j1f̃ outside Ñ ×R. The reduction of

Λ̃1 along Z̃×R is a j1(g′), where g′ differs from g by a constant. To the family Λt we
can apply considerations of Statement 3.1 . Concluding inequality on g′ obviously
finish the proof. �

Any two graphs of differentials of functions could be joined by compactly sup-
ported Hamiltonian isotopy. Hence it is imposiible to lift a Hamiltonian isotopy
joining the graph of the differential of zero function with the graph of differential of
a function g such that max

x∈M
g(x)−min

x∈M
g(x) > 2. Such a function obviously exists if

the dimension of M is not zero.

References

[AG] V.I. Arnold, A. Givental



COUNTEREXAMPLES TO LIFTING OF HAMILTONIAN AND CONTACT ISOTOPIES 5

Symplectic geometry, Encyclopedia of mathematical sciences vol 4., Springer 1997.
[Ch] Y. Chekanov,
[EG] Y. Eliashberg, M. Gromov
[EKP] Y. Eliashberg, S. S. Kim, L. Polterovich, Geometry of contact transformations and domains:

orderability vs. squeezing, arXiv:math/0511658 .
[FP] E. Ferrand, P. Pushkar, Morse theory and global coexistence of singularities on wave fronts.

J. London Math. Soc. 74 (2006), 527–544
[La] F. Laudenbach
[P] P.Pushkar, Generalization
[Th] D.Theret
[Vi] C. Viterbo, Symplectic topology as the geometry of generating functions,

Math. Ann. 292 (1992), 685-710.


